

# Introductory Course: Using LS-OPT® on the TRACC Cluster

# 2.6 - Introduction to Reliability Based Design Optimization (RBDO)

By: Cezary Bojanowski, PhD



## Goals of Stochastic Investigations

- The stochastic investigations are performed to obtain information on the:
  - Variation of the responses due to variation of input (variables, parameters).
  - Significance / Contribution of the parameters with respect to specific responses.
  - Assessment of reliability of structure
  - Robust Parameter Design (Objective → min standard deviation of the response)
  - Design optimization subject to reliability based constrains





## Reliability Assessment

The reliability of a given design is defined as:

$$Reliability = 1 - probability of failure$$

It may be assessed by comparing a numerically determined failure probability with a given target probability of an event. Reliability of a specific design is achieved if condition below is satisfied:

$$P_f < P_t$$

- The selection of the target probability is problem dependent and often oriented to the desired product quality vs. product cost.
- Sometimes safety distance is defined based on these definitions as:

$$d_s = P_t - P_f$$

• Positive values of  $d_s$  indicate a permissible design, and higher positive values stand for a more reliable design.

## Reliability Based Design Optimization

- The objective of the reliability based design optimization (RBDO) may be formulated regarding two different aspects:
  - In order to achieve a maximum reliability of an investigated subject with respect to a set of problem dependent constraints the objective is given:

$$\max\left(d_{s}\right)/\boldsymbol{c}(x_{i})>0$$

- where: c(x) > 0 is set of constraints, and safety level is maximized under the condition that the constraints are met.
- Conventional objectives q concern with e.g. the reduction of cost due to minimization of the mass. In order to combine these optimization goals with the idea of a reliable design, the objective of RBDO may also be formulated as:

$$\min(q) / d_s$$
,  $c(x_i) > 0$ 

The safety distance is additionally considered as constraint of an actual optimization problem.



## Reliability Based and Deterministic Optimization

Deterministic optimum



RBDO optimum



- What is the probability of failure?
- Which point is likely to fail first?

## **RBDO** and Deterministic Optimization

Deterministic optimization problem:

$$\min f(x)$$

$$g_{j}(x) \ge 0; \quad j = 1, 2, ..., m$$

$$h_k(x) = 0; \quad k = 1, 2, ..., l$$

$$X_{i,L} \le X_i \le X_{i,U}$$

Objective function

Inequality constraints

**Equality constraints** 

Side constraints - Bounds on variables

RBDO optimization problem:

$$\min f(x)$$

$$P(g_j(x) \le 0) \le P_j; \quad j = 1, 2, ..., m$$

$$h_k(x) = 0; \quad k = 1, 2, ..., l$$

$$X_{i,L} \le X_i \le X_{i,U}$$

Objective function

Reliability constraint

**Equality constraint** 

Side constraints - Bounds on variables

## **Reliability Assessment**

In order to determine the safety distance  $d_s$ , in the general case the failure probability has to be computed by numerical evaluation of the integral:

probability density

$$P_f = P[g(x) \le 0] = \int_{g(x) \le 0} f(x) dx$$

- Where f(x) denotes joint probability density function of the random variables x and g(x) represents limit state function.
- The limit state function is usually highly non-linear and is only given in non closed form. Usually the indicator function is defined as:

$$I_f(x) = \begin{cases} 1 & \text{if } x \in F \\ 0 & \text{if } x \notin F \end{cases} \text{ with } F = \{x / g(x) \le 0\}$$

Then, probability of failure in simulation based problem is re-defined as:

$$P_f = \int_x I_f(x) \cdot f(x) dx$$



 $g(x) \leq 0$ 

failure

region l

## **Reliability Assessment**

 This enables the point estimation of the failure probability based on the sampling results of a Monte Carlo simulation according to:

$$\hat{P}_f = \frac{1}{N} \sum_{k=1}^{N} I_f(x_k)$$

With N – sample size.

A minimum of sample size is estimated by:

$$N \ge \frac{1 - \hat{P}_f}{\hat{P}_f \cdot \delta_{\hat{P}_f}^2}$$

• Where  $\delta_{\hat{P}_f} = \frac{\sigma}{\mu}$  is a coefficient of variation. N becomes very large for small values of the failure probability. Thus, it is advisable to apply metamodel based stochastic simulation techniques.

## Basic Structural Reliability Problem



 $x_s$  - Tension load

 $x_R$  — Tensile strength

 $x_R, x_S$  — Non-negative, independent random variables with probability density functions:

$$f_R(x_R), f_S(x_S)$$

$$x_R \le x_S$$
 - failure

## Probability of Failure



- Probability of failure:  $P_f = P[X_R \le X_S] = \int_{x_R \le x_S} f_R(x_R) f_S(x_S) dx_R dx_S = \int_0^\infty F_R(x_S) f_S(x_S) dx_S$
- The integral is hard (if not impossible) to compute for most of the real cases.

## Probability of Failure

- Alternative formulation in terms of limit state function  $g(X_R, X_S) = X_R X_S$
- Since  $g \le 0$  defines the failure region, probability of failure can be defined as:

$$P_f = P[g(X_R, X_S) < 0]$$

The mean of the limit state function (mean margin of safety):

$$\mu_g = \mu_R - \mu_S$$

When resistance and load are not correlated, the standard deviation of the limit state function is:

$$\sigma_g = \sqrt{\sigma_R^2 + \sigma_S^2}$$

## Reliability Index

The probability of failure can be computed as follows:

$$P_{f} = \int_{-\infty}^{0} f_{g}(g) dg = \Phi\left(-\frac{\mu_{g}}{\sigma_{g}}\right) = \Phi(-\beta)$$

Where:  $\Phi(\cdot)$  is cumulative distribution function

The Safety Index or Reliability Index is defined as:

$$\beta = \frac{\mu_g}{\sigma_g}$$

 The Reliability index indicates the distance of the mean margin of safety from the failure region

## Reliability Index - Graphical Interpretation

Reliability Index 
$$\beta = \frac{\mu_g}{\sigma_g}$$



Reliability = 1 - probability of failure

## Hasofer and Lind (HL) Transformation

X - space



U - space

$$\hat{R} = \frac{x_R - \mu_R}{\sigma_R} \qquad \qquad \hat{S} = \frac{x_S - \mu_S}{\sigma_S}$$



## Hasofer and Lind (HL) Transformation

The random variables are mapped into set of normalized and independent variables:

$$\hat{R} = \frac{x_R - \mu_R}{\sigma_R} \qquad \hat{S} = \frac{x_S - \mu_S}{\sigma_S}$$

The limit state function takes form:

$$\hat{g}(u) = \hat{R}\sigma_R + \mu_R - \hat{S}\sigma_S - \mu_S$$

The shortest distance from the origin to the failure surface is equal to the safety index:

$$\beta_{HL} = \frac{\mu_R - \mu_S}{\sqrt{\sigma_R^2 + \sigma_S^2}}$$

 The closes point on this surface is called Most Probable Point (MPP) of failure



## Hasofer and Lind (HL) Transformation

• In general case the limit state function is nonlinear and can be defined as:

$$\hat{g}(u) = g(\{u_1\sigma_{x_1} + \mu_{x_1}, u_2\sigma_{x_2} + \mu_{x_2}, ..., u_n\sigma_{x_n} + \mu_{x_n}\}^T) = 0$$

Where:

$$u_i = \frac{x_i - \mu_{x_i}}{\sigma_{x_i}}$$

- First order Taylor series of expansions of  $\hat{g}(u)$  at the MPP is considered
- The method is called First Order Second Moment (FOSM) since only mean and standard deviation (second moment about the mean) are used in description of inputs and outputs.



## Reliability Based Design Optimization

RBDO optimization problem can be reformulated into:

$$\min f(x) \qquad \qquad \text{Objective function} \\ P\big(g_j(x) \leq 0\big) - \phi\big(-\beta_{t_j}\big) \leq 0; \quad j = 1, 2, ..., m \qquad \text{Reliability constraint} \\ h_k(x) = 0; \quad k = 1, 2, ..., l \qquad \qquad \text{Equality constraint} \\ x_{i,L} \leq x_i \leq x_{i,U} \qquad \qquad \text{Side constraints - Bounds on variables} \\ \end{cases}$$

 Safety index is the solution of a constrained optimization problem in the standard normal space:

$$\min \beta(u) = (u^T u)^{\frac{1}{2}}$$

$$g(u) = 0$$

$$u^* - MPP$$

- Checking reliability constraints in design optimization becomes inner level optimization.
- There are several methods of solving RBDO problems: Double Loop, Sequential Optimization and Reliability Assessment (SORA), Single Loop.

### **Problem**

- Recall from last example:
- Probability of z-displacement exceeding -140 is 10.8%





## **Problem**

 After adding variability in load 5% one out of a 100 samples was leading to collapse of the structure!





#### **Problem**

- The system can be redesign to reduce the probability of the failure.
- RBDO tasks can be defined accordingly:
  - Find ranges for design variables that will assure that the probability of occurrence of unwanted event will remain below specified limit.
  - Here: Find ranges for design variables that will assure that the probability of zdisplacement being greater than 140 units is below 2.5%

#### New K-file

- Two parts created
- New variables:
  - Design variable thick1
  - Design variable thick2
  - Design variable eb
  - Noise variable load
- Objective: minimize mass of the structure.
- Constraint: z-displacement of node 51 less than
  - -140 with probability not greater than 2.5%



#### Task Tab

- Go to Task tab
- Select RBDO from Metamodel based group





## Strategy Tab

- Go to Strategy tab
- Select Sequential with Domain Reduction SRSM as an Optimization Strategy





#### Solver Tab

- Navigate to appropriate lsoptscript in Command field.
- Find correct k-file in Input File field
- Enter RBDO as a Name of Analysis Case and press Add





#### **Distributions Tab**

 Modify distribution modulus to: Mean 0 and Standard Deviation 0.015 (5 % of initial value 0.3)



#### **Distributions Tab**

 Modify distribution thickness to: Mean 0 and Standard Deviation 3.25 (5 % of initial value 65)



#### **Distributions Tab**

Create additional Normal distribution load with Mean 1 and Standard Deviation
 0.05



#### Variables Panel

- Create variable load with distribution load
- Create variable modulus with starting value 0.3 min 0.29 and max 0.31
- Assign to it distribution modulus
- Create variables thick1 and thick2 with starting value 65 min 60 and max 75
- Assign to them distribution thickness



### K-file Modification

#### Previously:

\*SECTION\_SHELL

| \$#  | secid    | elform     | shrf         | nip        | propt    | qr/irid | icomp | setyp  |
|------|----------|------------|--------------|------------|----------|---------|-------|--------|
|      | 2        | 4          | 0.000        | 3          | 0        | 0       | 0     | 0      |
| \$#  | t1       | t2         | t3           | t4         | nloc     | marea   | idof  | edgset |
| <<65 | *thick>> | ,<<65*thic | k>>,<<65*th: | ick>>,<<65 | *thick>> |         |       |        |

#### Now:

\*PARAMETER

Rthick,65

\*SECTION\_SHELL

| \$# | secid | elform | shrf  | nip | propt | qr/irid | icomp | setyp  |
|-----|-------|--------|-------|-----|-------|---------|-------|--------|
|     | 2     | 4      | 0.000 | 3   | 0     | 0       | 0     | 0      |
| -   |       | t2     | t3    | t4  | nloc  | marea   | idof  | edgset |





## Sampling Tab

- Go to Sampling Tab
- Select Polynomial Metamodel with Linear Order
- Use D-Optimal Point Selection method and leave default 8 Simulation Points





## Responses Tab

- Go to Responses Tab
- From left window select MASS and pick All Parts to be included in the response
- Enter TOTAL\_MASS for response name and press Add





## **Objective Tab**

- Go to Objective Tab
- Select TOTAL\_MASS and leave default Weight 1.0





#### **Constraints Tab**

- Go to Constraints Tab
- Select MIDDLE\_Z\_DISP\_RESP
- Enter -140 for lower bound and 0.025 for probability of response being lower than that lower bound





## **Algorithms Tab**

- Go to Algorithms Tab
- Select GA (Genetic Algorithm)





#### Run Tab

- Go to Run tab
- Select PBS for your Queuing system (if on TRACC cluster) or leave none
- Set the number of concurrent jobs 8 and number of iterations to 10
- Press Run button





#### Viewer

- Go to Viewer tab in LS-OPTui
- Press Restart viewer button
- From New plot panel select "Optimization History"





## **Optimization History**











## **Optimization History**

- Go to Max Constraint Violation
- In 1<sup>st</sup> iteration the constraints are dealt





## **Optimization History**

- Go to Constraints and select MIDDLE\_Z\_DISP\_RESP
- Select RBDO Lower Bound Probability as a Value to plot
- Click with mouse close to the right end of the plot





#### Viewer

- Go to Viewer tab in LS-OPTui
- Press Restart viewer button
- From New plot panel select "Statistical Tools"





#### **Statistical Tools**

- Go to Statistical Tools
- Pick Bounds and type -140 as Lower bound for MIDDLE\_Z\_DISP\_RESP Response
- Probability of z-displacement exceeding -140 is 2.5%



